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SUMMARY

An algorithm for the simulation of unsteady, viscous, stratified compressible flows, which remains valid
at all speeds, is presented. The method is second-order accurate in both space and time and is
independent of the Mach number. In order to remove the stiffness of the numerical problem due to the
large disparity between the flow speed and the acoustic wave speed at low Mach number, an approximate
Newton method, based on artificial compressibility, is proposed. Additionally, a modified advection
upstream splitting method (AUSM+ ) scheme is used, which permits accurate computations of both
compressible and incompressible flows. A detailed description of the method and an efficiency compari-
son with other approximate Newton methods described in the literature are given. Furthermore, it is
shown that the accuracy of the algorithm is not dependent on the Mach number through the
computations of various benchmark test cases. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past years, unified numerical methods have been developed in the hope of solving
compressible and incompressible flow problems using a single model. The need for unique
numerical schemes that simulate both low- and high-speed flows has become increasingly
apparent. For instance, when large temperature variations are present in low-speed flows, as in
many combustion problems, incompressible models are insufficient as these temperature
variations lead to significant compressibility effects, even at low Mach numbers. Additionally,
the engineering community prefers to use a unique code to deal with the broad range of flow
conditions. Greater unification is achieved if the scheme preserves the possibility of time-
accurate unsteady computations; however, this prohibits the use of recent preconditioning
methods [1–4]. Indeed, this approach fails in cases of unsteady applications in spite of its
efficiency to compute steady, nearly incompressible flows with compressible models, since the
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transient behavior of the Navier–Stokes equations is modified. The main difficulty in solving
the compressible, unsteady equations at a low Mach number is due to the large disparity
between the acoustic wave speed and the advection velocity. Therefore, an implicit temporal
discretization must be used otherwise a severe stability restriction results on the time step. This
is due to the fact that numerical stability considerations impose small time steps on the
acoustic waves, while the physics is mainly driven by the main flow, where the time scale is
large. Only three kinds of implicit methods that preserve the possibility of unsteady applica-
tions at all speeds are described in the literature. The first one, which is at most second-order
accurate in time, is based on Strang’s splitting [5] of the Navier–Stokes equations into two
sub-systems. One sub-system contains the acoustic part, where an implicit method is used for
the integration, and the other is integrated by an explicit scheme. Erlebacher et al. [6]
successfully used this technique to compute isotropic homogeneous turbulence at low Mach
numbers. However, the extension to non-homogeneous flow conditions is not straightforward
and very few attempts have been reported [7]. The second approach, which is only first-order
accurate in time, is based on an extension of projection methods to compressible flows [8–10].
Finally, the third method is built on dual-time stepping integration procedures [11–17].

The work presented here is based on the third method, which is in fact equivalent to an
approximate Newton method, and can achieve second-order accuracy in time. Since a fully
implicit temporal discretization is used, the time step can be determined only by physical
criteria and accuracy considerations. However, contrary to References [11–17], a second-order
accurate shock-capturing scheme is employed on a collocated grid in order to achieve a higher
degree of polyvalency. Also, different Newton approximations are considered to gain better
computational efficiency. Since the accuracy of standard shock-capturing schemes degrades at
low Mach number [18], a modified AUSM+ scheme, developed by Edwards and Liou [19] for
all speed steady flows, is employed. Other shock-capturing schemes, such as modified Roe or
Jameson schemes [20,21], could be used as well. However, we retain the modified AUSM+
scheme because it seems to realize a good compromise between accuracy and complexity. Some
simplifications are achieved in the Newton approximations by neglecting all off-diagonal
terms, which do not contribute to the pressure/velocity coupling nor to the stabilization of
high-Reynolds number flows. Despite the slower convergence of the Newton process, compu-
tational efficiency is improved. Indeed, as Bi-CGSTAB [22] is used to solve the linear system
associated with the Newton process, the above approximations allow for a better conditioning
and a faster matrix/vector product, while the storage requirements remain reasonable. Another
crucial approximation is introduced in the Jacobian, for low-Mach number flows, by using an
adaptation of artificial compressibility methods [23]. This leads to a better computational
efficiency [24] when compared with the use of the preconditioning matrix developed for steady,
nearly incompressible flows [11–13,15].

In Section 2, a set of equations valid at all Mach numbers and consistent with the full
compressible conservative Navier–Stokes equations is given. The numerical method, as well as
the spatial and temporal discretizations and the approximate Newton method are described in
Section 3. Section 4 is devoted to an efficiency comparison between the present method and
other approximate Newton methods [11,12]. Guidelines are indicated for the choice of optimal
numerical parameters associated with artificial compressibility. Finally, the efficiency of the
proposed scheme is compared with numerical benchmarks for a broad range of laminar flow
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conditions in Section 5. The spatial and temporal accuracy of the scheme is evaluated in the
nearly incompressible regime, by computing vortex shedding past a square cylinder. The ability
to compute incompressible stratified flow with large temperature variations is assessed through
the computation of Rayleigh–Bénard flow. The behavior of the algorithm is also studied in the
subsonic and transsonic regimes through the computations of mixing layer and the interaction
between shock and temperature spots. No fully supersonic flow has been computed because
the spatial discretization reduces to the standard AUSM+ scheme, which has a proven
efficiency in such a flow regime [25,26].

2. GOVERNING EQUATIONS

2.1. Dimensionless form

The two-dimensional unsteady Navier–Stokes equations are used for a viscous compressible
Newtonian fluid. A dimensionless form of the equations is retained. The non-dimensional
variables are defined from the physical variables as follows:

ui=
ui*
u0

, T=
T*
T0

, r=
r*
r0

, p=
p*

r0u0
2 , t=

t*u0

L0

, m=
m*
m0

, k=
k*
k0

, g=
g*
g0

(1)

where the symbols u0, T0, r0, L0, m0, k0, and g0 denote a characteristic velocity, temperature,
density, length, dynamic viscosity, thermal conductivity, and gravity respectively. Also, the
subscript 0 and superscript * indicate the charateristic and dimensional quantities respectively.

Several dimensionless numbers are defined as

Re=
r0u0L0

m0

, Pr=
m0Cp

k0

, M0
2=

u0
2

gRT0

, Ra=
g0L0

3CpDT
m0k0T0

, Fr=
g0L0

u0
2 =

RaT0

Re2PrDT
(2)

where DT is a characteristic temperature variation of the flow and g is the ratio of the specific
heat capacities (1.4 for air). Re is the Reynolds number, Pr the Prandtl number, M0 the
reference Mach number, Ra the Rayleigh number, and Fr the Froude number. The conserva-
tive form of the Navier–Stokes equations written in Cartesian co-ordinates can be expressed
as

(Qc

(t
+
((Ej−Ej

n)
(xj

=H (3)

where the vectors Qc, Ej, Ej
n, and H are defined as

tQc= (r, ru1, ru3, re)

tEj= (ruj, ru1uj+d1jp, ru3uj+d3jp, (re+p)uj)
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tEn=
�

0, t1j, tj3, u1t1j+u3tj3+
m

RePr(g−1)M0
2

(T
(xj

�
tH= (0, 0, −Frr, −Frru3)

re=
p

g−1
+

1
2

rukuk

tij=
m

Re
Sij

Sij=
(ui

(xj

+
(uj

(xi

−
2
3

dij

(uk

(xk

Summation over the repeated indexes is assumed with j=1 or j=3. The superscript ‘t ’
indicates the transposed vectors. The fluid is supposed to be an ideal gas satisfying the
equation of state

p=
rT

gM0
2 (4)

The dynamic viscosity m is determined by Sutherland’s equation

m=
1+c
1+T

T3/2 (5)

where c depends on the fluid and the reference temperature.

2.2. All Mach number formulation

A significant source of error at low Mach numbers is due to the fact that the mean level of the
pressure is of order 1/gM0

2 (see Equation (4)). As a consequence, round-off errors can appear
in the calculation of the pressure gradient in the momentum equations. To prevent this
problem the pressure can be decomposed into static and dynamic parts [11,27]. Likewise, only
the deviation of density from its static state is considered in the stratification term. The static
state is determined by setting all unsteady terms and velocity to zero in Equation (3). This
static state, denoted by the subscript ‘s’, is defined as

(

(xj

�
m
(Ts

(xj

�
=0,

(ps

(x3

= −Frrs, ps=
rsTs

gM0
2 (6)

An analytical solution of these equations is proposed by Spiegel [28] in the case of constant
viscosity. The dynamic part of the pressure maintains a value of the order of unity, and no
significant round-off errors are produced as long as the dynamic pressure, instead of the total
pressure, is retained as a variable.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 371–401



UNSTEADY VISCOUS FLOWS 375

From Equation (4), dynamic pressure pdyn is defined as follows:

p(x, z, t)=ps(z)+pdyn(x, z, t) (7)

and the equation of state becomes

r(x, z, t)=
(ps+pdyn)gM0

2

T
(8)

In order to achieve good property conservation in the transsonic flow conditions, the
conservative form of the energy equation must be retained

(rE
(t

+
((rE+p)uj

(xj

−
Cp

RePr
(

(xj

�
m
(T
(xj

�
−
(tijui

(xj

+Frru3=0 (9)

However, the pressure/temperature form of the energy equation, which is equivalent to
Equation (9) at the continuum level, is better suited for incompressible flow conditions

rCpdt(T)−dt(p)−
Cp

RePr
(

(xj

�
m
(T
(xj

�
−tij

(ui

(xj

+ui
�(rui

(t
+
(ruiuj

(xj

+
(pd

(xi

−
(tij

(xj

+Frrdi3
�

+
uiui

2
�(r
(t

+
(ruj

(xj

�
+CpT

�(r
(t

+
(ruj

(xj

�
=0 (10)

where dt denotes the material time derivative and Cp the heat capacity at constant pressure.
The three last terms of Equation (10) are not implemented in incompressible methods as

they are equal to zero at the continuum level. As a consequence, the use of both Equation (9)
and a numerical method based on the Newton process can lead to inaccurate simulation in the
low-Mach number regime. Indeed, for efficiency reasons, the Newton process does not fully
converge at each time step. Thus, Equations (9) and (10) are no longer equivalent numerically
as the three last terms of Equation (10) are proportional to eNewton, which is the convergence
criterion of the Newton process. More particularly, the term

CpT
�(r
(t

+
(ruj

(xj

�
in Equation (10) can slightly differ from zero, since it is of order CpeNewton with Cp= [(g−
1)M0

2]−1. As a consequence, this term is subtracted from the conservative form of the energy
equation in order to produce an accurate solution in both transsonic and nearly incompressible
flow conditions. The new set of equations, which must be integrated to solve the compressible
Navier–Stokes equations at all Mach numbers, is written as

f=0 (11)
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where
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Á
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(
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Ã
Ã
Ã
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(12)

3. NUMERICAL METHOD

3.1. Spatial and temporal discretization

The spatial discretization can be made on both a staggered or collocated grid. The staggered
grid is well adapted to the computation of very low Mach numbers as the pressure/velocity
coupling is ensured by the marker-and-cell (MAC) discretization. However, despite the recent
progress from the work of Bijl and Wesseling [10], the implementation of accurate shock-
capturing schemes is not straightforward. Consequently, the spatial discretization is obtained
by a node-centered finite volume technique on a collocated grid. This, in turn, is well adapted
to the use of shock-capturing schemes. The semi-discrete form of Equation (11) can be written
as follows:

(Qc i,k

(t
+Ri,k=Hi,k

mod (13)

where ‘i, k ’ indicate the collocation point, Hmod= tH+ t(0, 0, Frrs, CpTf1), and R represents
the spatial derivative of the Euler and viscous fluxes

Ri,k= %
j=1 or 3

(Ej−Ej
n)i+1/2d 1j, k+1/2d 3j

− (Ej−Ej
n)i−1/2d 1j, k−1/2d 3j

Dxj(i, k)
(14)

where i+1/2d1j, k+1/2d3j refers to a cell interface. However, although this discretization
method is an accepted technique for transsonic flows, current shock-capturing schemes must
often be modified to preserve their accuracy on the whole range of Mach numbers. Indeed, the
numerical dissipation of shock-capturing schemes is often based on �u �+c (Roe,
Jameson, . . . ), where c is the speed of sound. Thus, the accuracy of the solution is deteriorated
when the speed of sound becomes large in the incompressible regime [18,20,29]. The shock-
capturing scheme utilized here is the AUSM+ scheme [25], which has been modified by
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Edwards and Liou [19] to preserve its accuracy and the pressure/velocity coupling in the nearly
incompressible regime. This flux-vector splitting scheme is chosen because it seems to reach a
better compromise between accuracy and efficiency than other shock-capturing schemes
recently developed [20,21].

In the x1-direction, the AUSM+ scheme leads to the following splitting of the Euler flux at
the cell interface i+1/2, k (the index k is omitted for the case of notation):

E1 i+1/2=Fi+1/2(ML, MR)+pi+1/2(ML, MR) t(0, 1, 0, 0) (15)

with FL/R indicating the left or right interpolation of the variable F at the cell interface, and
M representing the local value of the Mach number. In Equation (15), the quantities on the
right-hand side are computed as

Fi+1/2(ML, MR)= [M4
+(ML)+M4

−(MR)]ci+1/2

Á
Ã
Ã
Ã
Ä

r

ru1

ru3

re+p

Â
Ã
Ã
Ã
ÅL/R

(16)

pi+1/2(ML, MR)=M5
+(ML)pL+M5

−(MR)pR (17)

with ci+1/2 the speed of sound at the interface [23] and

M1
9(M)=0.5(M9 �M �)

M4
9(M)=

!90.25(M91)290.125(M2−1)2, if �M �51
M1
9(M), otherwise

M5
9(M)=

!0.25(M91)2(2�M)9 3
16M(M2−1)2, if �M �51

0.5(19 �M �/M), otherwise

In the low-speed zone, the numerical dissipation contained in Equation (16) goes to zero. This
tends to decrease the robustness of the method. However, in Equation (17), the dissipation
goes to infinity when the reference Mach number M0 is small. In order to solve these problems,
some modifications were introduced by Edwards and Liou [19]. These modifications led to a
new definition of the interface Euler flux

E1 i+1/2
mod =Fi+1/2

mod (M( L, M( R)+pi+1/2
mod t(0, 1, 0, 0) (18)

where
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Fi+1/2
mod (M( L, M( R)=Fi+1/2(M( L, M( R)hi+1/2

+ (M4
+(M( L)−M1

+(M( L)−M4
−(M( R)+M1

−(M( R))

×hi+1/2ci+1/2
� 1

ai+1/2

−1
�

(pL−pR)
K1gM0

2

Ti+Ti+1

t(1, u1, u3, e+p/r)L/R

pi+1/2
mod (M( L, M( R)=pi+1/2(M( L, M( R) (19)

and

ai=Min[1, c i
−2 Max[�u �2, K2]], hi+1/2= ((1−ai+1/2)Mi+1/2

2 +4ai+1/2)1/2(1+ai+1/2)−1

The values of ai+1/2 and Mi+1/2 are obtained by a simple arithmetic average and

M( L/R= (ci+1/2hi+1/2)−1((1+ai+1/2)uL/R+ (1−ai+1/2)uR/L)

The constants K1 and K2 are numerical parameters. In Equation (19), the second term allows
for pressure/velocity coupling at low values of the reference Mach number M0. The modifica-
tion of Equation (17) involves accurate simulation of nearly incompressible flows, while
maintaining robustness of the scheme at high Reynolds number. Note here that Edwards and
Liou [19] set (K1, K2) equal to (1, 0.25) respectively. In this work, slightly different values are
retained: (K1, K2)= (0.1, 0.04). Numerical experiments have shown that, on the one hand, the
pressure/velocity coupling and the stabilization of high-Reynolds number flows are still
achieved in spite of the reduction of the numerical dissipation. On the other hand, the implicit
temporal integration is made easier by a slight modification of the system conditioning. The
definition of a proposed by Edwards and Liou [19], which takes into account the eigenvalues
of the preconditioned system [1–3], is used in this work. As we will demonstrate, favorable
results are reached despite the fact that no time derivative preconditioning technique is used.
A possible explanation is that the main feature of a is a proper scaling of the numerical
dissipation, independently of the temporal derivative terms [30]. For supersonic flow condi-
tions, the modified scheme retrieves the standard form of the AUSM+ method, which has
already proven efficiency in this case [25,26]. As for the evaluation FL/R, a third-order accurate
interpolation is used, and a Minmod limiter [31] is employed for transsonic flows to deal with
the presence of shocks. For the diffusive fluxes, the spatial discretization is achieved by central
second-order derivative approximations.

For the temporal discretization, an implicit scheme must be used to develop an algorithm
where the time step is governed by the physics rather than by numerical stability consider-
ations. Otherwise, in the nearly incompressible regime, the value of the time step is governed
by the acoustic wave speed, while the physics are mainly driven by the underlying flow, where
the time scale is large. Then, the temporal derivative of Qc in Equation (13) is discretized by
a three-level backward differentiation formula
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(Qc

(t
:

3Qc
n+1−4Qc

n+Qc
n−1

2Dt
=Dt(Qc) (20)

whereas Euler, viscous fluxes, and Hmod are estimated at n+1. With Dt being the time step,
the superscript n denotes the physical time (tn= tinitial+nDt, Qc

n=Qc(tn)). This differentiation
is second-order accurate and possesses good stability properties [32]. With Equation (20) and
the modified AUSM+ scheme, a discretized form of Equation (13) is obtained

Dt(Qc
n+1)+Rn+1−Hmod n+1=0 (21)

For convenience, Equation (21) is written as

fd(Qc
n+1, Qc

n, Qc
n−1)=0 (22)

3.2. Approximate Newton method

An exact Newton method can be employed to solve Equation (22). This requires a choice of
both a set of variables Q, used to linearize Equation (22) and an iterative procedure

�(fd

(Q
n

�Q l

DQ= − fd(Qc
l , Qc

n, Qc
n−1) (23)

where DQ=Qn+1,l+1−Qn+1,l is the lth iterate solution of the Newton process. For conve-
nience, Qn+1,l is noted as Ql and Equation (23) can be rewritten by using Equation (21)

� 3
2Dt

�(Qc

(Q
n

+
�(R
(Q

n
−
�(Hmod

(Q
n�

�Q l

DQ= − fd(Qc
l , Qc

n, Qc
n−1) (24)

To preserve the accuracy of Equation (20), the iterative procedure is stopped when the
following constraint is satisfied [31]:

fd(Qc
l , Qc

n, Qc
n−1)5CDt2=eNewton, where C is a constant vector with C2=1 (25)

If Equation (23) is solved with sufficiently good precision, only one iteration of the Newton
process is required to fill Equation (25). Unfortunately, an analytical formulation of the
Jacobian matrix resulting from an exact linearization is at best very time consuming, and
sometimes impossible to evaluate. Additionally, the efficiency of the linear system associated
with Equation (23) and solved by an iterative procedure depends on the condition number of
the system. This number, based on Euclidian matrix norms, is defined as [34]
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Cond2
��(fd

(Q
n�

=
lmax

��(fd

(Q
nt�(fd

(Q
n�

lmin
��(fd

(Q
nt�(fd

(Q
n� (26)

where lmax and lmin are the maximum and minimum eigenvalues respectively. The closer to
unity the condition number is, the less expensive (in terms of number of iterations) the solving
procedure of the linear system is. Unfortunately, since all variables are strongly coupled, the
condition number associated with an exact Newton method is often large, even at a Courant–
Friedrich–Lewy (CFL) number close to 1. The appropriate choice of Q is a first step towards
optimizing the matrix complexity and its condition number. For transsonic unsteady flows,
Q=Qc is a natural choice (see Reference [26] for instance), leading to a small condition
number when the CFL number is close to unity. However, this choice implies round-off error
problems in the nearly incompressible regime. Several authors [11–13] chose to employ the
primitive variables (pdyn, u1, u3, T) to alleviate round-off error problems. However, the struc-
ture of [(Qc/(Q ] in Equation (24) is much more complex than the identity matrix, and the use
of a small time step has a smaller definite influence on the condition number. Thus, a
compromise is utilized in this work, with tQ= (pdyn, ru1, ru3, T). Indeed, the choice of pdyn and
T solves round-off error problems, and the simplicity of temporal derivative linearization, as
well as the conditioning, is improved through the momentum equations. Also, the linearization
of the temporal derivative in Equation (21) is obtained through the matrix Mt

Mt=
3

2Dt

Æ
Ã
Ã
Ã
È

gM0
2/Tl 0 0 − (r/T)l

0 1 0 0
0 0 1 0

(1−g)M0
2 0 0 4

3r
n−1

3r
n−1

Ç
Ã
Ã
Ã
É

(27)

In fact, approximations are introduced in Mt by setting the contribution of the kinetic energy
variations in the energy equation to zero (fourth line of Mt). Despite this choice of Q, the
Jacobian matrix remains very complex and its condition number is still large. Therefore, a
faster temporal integration is achieved (i.e. requiring less computing time), by using an
approximate Newton method. This is based on the replacement of [(fd/(Q ] in Equation (23)
by a matrix L, which possesses a smaller condition number. However, a trade-off must be
reached between the improvement of the condition number and the errors introduced in the
Newton process by the approximation of [(fd/(Q ] by L. On the one hand, the complexity of
the matrix coefficients and its conditioning have decreased, rendering each solution of
Equation (25) faster. On the other hand, the number of Newton iterations required to satisfy
Equation (25) increases. Despite the increased number of iterations, the CPU cost per time step
can be significantly reduced by a faster solution of the linear system and appropriate
approximations.

Three levels of approximations are used in this work. The first one concerns the Euler fluxes
equation (18), the exact linearization of which can be rewritten as
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�(E1 i+1/2
mod

(Q
n

�Q l

DQ= %
2

p= −1

�(E1
mod(Qi−1, . . . , Qi+2)

(Qi+p

n
�Q l

DQi+p (28)

To reduce the number of non-zero entries in the linear system, a first-order interpolation is
used to estimate the right and left state in the linearization of the Euler fluxes in Equation (28).
This leads to

�(E1 i+1/2
mod

(Q
n

�Q l

DQ: %
1

p=0

�(E1
mod�(Qi−1, . . . , Qi+2)

(Qi+p

n
�Q l

DQi+p (29)

where E1
mod� is evaluated with Equation (18) and a first-order interpolation at the interface of

pL/R and Qc L/R in Equations (16) and (17). This approach is commonly employed [26,35,36]
because it does not significantly affect the stability of the iterative process, and thus a better
conditioning can be achieved. However, the number of non-zero entries due to the Jacobian
matrices of the right-hand side in Equation (29), and the linearization of the viscous terms,
remains large. Then, a second level of approximation is developed, as was done in Equation
(27), by neglecting certain contributions. For the Euler fluxes, the numerical dissipation of the
AUSM+ scheme can be replaced by the spectral radius of the Roe’s matrix as was done in
Reference [26]. However, the validity of this approach over the whole range of Mach numbers
is not obvious. Therefore, approximations in the Jacobian matrix of the right-hand side in
Equation (29) are constructed by neglecting all off-diagonal terms, which do not contribute to
the pressure/velocity coupling or to the stabilization of high-Reynolds number flows. Thus, the
right-hand side of Equation (29) is approximated by

%
1

p=0

�(E1
mod�(Qi−1, . . . , Qi+2)

(Qi+p

n
DQi+p:E1

+DQi+E1
−DQi+1 (30)
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Æ
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(31)

with

C1= (M4
+(M( L)+M4

−(M( R))ci+1/2hi+1/2
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Numerical experiments have shown that Dp1, which arises from the linearization of
Equation (19), is crucial for the stability of the Newton process for low values of M0. This is
a direct consequence of the decoupling between pressure and velocity if Dp1 is set to zero in
Equation (31). Similarly, Du1, proceeding from Equation (19), stabilizes the Newton process
when low-speed zones are present in a flow at large Reynolds numbers. As for the linearization
of Hmod in Equation (13), some approximations are introduced as well. The stratification terms
are not taken into account by the matrix, and their implicit treatment is realized by Newton
iterations only. The linearization of T(j(ruj) is achieved by

�((T(j(ruj))
(Q

n
�Q l

DQ:(j(ruj)lDTi+Ti
l�(((j(ruj))

(Q
n

�Q l

DQ (32)

where the Jacobian matrix of the momentum field divergence in the second term of the
right-hand side is approximated through the use of the first component of Equation (30). Also,
(j(ruj)l is computed using the first component of Equation (19), with a third-order accurate
interpolation. Regarding the viscous fluxes, an approximation of the Jacobian matrix [(En/(Q ]
is achieved by the Mviscous matrix, described in Reference [17]. This matrix maintains the
contributions of the cross-derivative terms. The linearization of the Euler fluxes in the
x3-direction is achieved in a similar way and the generalization of Equations (29)–(32) to all
the collocation points leads to the MEuler matrix. Then, the approximation of Equation (23)
can be written as

MDQ= (Mt+MEuler+Mviscous)DQ= − fd(Qc
l , Qc

n, Qc
n−1) (33)

The structure of Mt defined in Equation (27) is very important for the computational efficiency
of unsteady flows. Indeed, in such cases, the time step employed is quite small, which leads to
good conditioning (i.e., small condition number) of the linear system associated with Equation
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(33). However, this beneficial matrix property is lost for nearly incompressible flow prob-
lems if the time step is based on the velocity rather than the wave speed. Indeed the first
diagonal element of Mt vanishes for small values of M0. To alleviate this problem, some
researchers [11–14] introduced a third level of approximation in the computation of the
Jacobian matrix, by adding a preconditioning matrix G, developed for the computation of
steady nearly incompressible flows [1–4], to Equation (33). This approach is often called
‘dual-time stepping integration’, as these preconditioning matrices introduced a dual-time. It
is, however, equivalent to an approximate Newton procedure. Still, these matrices contain
approximations in each line of Equation (33), while only the first one needs to be modified
to reduce the condition number at low Mach numbers. Thus, a better compromise between
the reduction of the condition number and the increase of Newton approximations
owing to G, can be obtained [24]. This can be done for unsteady, low-Mach number
flow; for instance, by using an adaptation of the artificial compressibility method de-
veloped by Chorin [23]. Finally, the linear system solved at each iteration of the Newton
process is

LDQ=
def� 3b

2Dt
G+M

�
DQ= − fd(Qc

l , Qc
n, Qc

n−1) (34)

with

G=

Æ
Ã
Ã
Ã
È

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Ç
Ã
Ã
Ã
É

(35)

The optimal value of the numerical parameter b is completely case-dependent, and must be
adjusted to achieve the best compromise between the reduction of the matrix condition
number in Equation (34) and the minimization of the approximations introduced in
[(fd/(Q ] by the matrix L. To solve the linear system associated with Equation (34), the
Bi-CGSTAB iterative method [22], based on two matrix/vector products, is employed.
Therefore, Dpj, Cj, GjpL, GjpR, Duj and (j(ruj), which are still complex, are stored during
the computation of the right-hand side of Equation (23) to accelerate the matrix/vector
product. As Mviscous does not require additional storage, a negligible additional cost in
terms of memory is introduced, since the requirements are less than three main diagonals of
L. Moreover, a Jacobi preconditioning is used to improve the efficiency of the Bi-
CGSTAB. This leads to the following linear system:

DL
−1LDQ= −DL

−1fd(Qc
l , Qc

n, Qc
n−1) (36)

where DL is the main diagonal of L.
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3.3. Boundary conditions

Since all variables are located at the boundaries, the treatment of the boundary conditions is
straightforward. For an isothermal wall, the velocity boundary condition is a no-slip condition
and the temperature is fixed to a prescribed value. An adiabatic wall corresponds to (T/(n=0
with (/(n denoting the derivative normal to the boundary. At the outflow boundary,
homogeneous Neumann conditions are used: (rui/(n=(T/(n=0. A non-centered, second-
order, three-point scheme is used to discretize normal derivatives at the boundary. The
pressure at the boundary is determined by a non-centered, second-order derivative approxima-
tion applied to the continuity equation.

4. ASSESSMENT OF THE TEMPORAL INTEGRATION METHOD

4.1. Comparisons with other approximate Newton methods

Over the past years several approximate Newton methods [11,12] have been proposed for the
computation of unsteady flows at low Mach numbers. In order to evaluate the efficiency of the
present method compared with existing ones, a simple test case has been considered. This test
case deals with the advection of a Taylor vortex, which permits assessment of the efficiency of
the preconditioning matrices developed by Merkle et al. [1,11] or Pletcher [12].

The computational domain is a square of length 1. At time t=0, the vortex is located in the
middle of the domain (x1=x3=0.5), and the advection velocity directed in the x3-direction is
equal to unity. The initial conditions are given by the relations

u1(x1, x3, t=0)=C1 exp(−C2r2)
u3(x1, x3, t=0)=1−C1 exp(−C2r2)

Ã
Ã
Ã

pdyn(x1, x3, t=0)=0
Tinitial(x1, x3, t=0)=1

(37)

with

C1=0.3, C2=88.9, r=
(x1−1/2)2+ (x3−1/2)2

This problem has been selected because the boundary conditions are periodic in both
directions, making the study easier. The reference Mach number M0 is set to 10−3 so that the
efficiency of the preconditioning matrix (see Equation (35)) in the incompressible regime can
be evaluated. The Reynolds number based on the length of the domain and the advection
velocity is set to 10000. A uniform mesh is used with Dx1=Dx3=0.01.

In order to compare the present preconditioning matrix with those of Merkle or Pletcher,
denoted GMerkle and GPletcher respectively, the numerical parameter b in Equation (35) must be
related to the dual-time step Dt introduced in References [11–13] through the following
relation:

Dt=2Dt/(3b) (38)
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Moreover, when GMerkle or GPletcher is used for the time stepping, the term

CpT
�(r
(t

+
(ruj

(xj

�
is not subtracted from the energy equation. The approximations used here in the Newton
process are thus identical to those proposed in References [11–13].

The efficiency of the present method compared with those proposed by Shuen et al. [11] or
Pletcher is illustrated in Figure 1, where the CPU time, normalized by the CPU time spent to
reach t=1 with a three-stage explicit Runge–Kutta scheme [47], is plotted for two CFL
numbers: 100 and 1000. Figure 1 shows that the present method is at least 5–6 times faster
than algorithms described in the literature for both CFL numbers. Moreover, an optimal value
of b exists, which strongly depends on the CFL number, although this value is nearly
independent of the choice of the preconditioning matrix. Indeed, for a fixed value of b, the
number of iterations required to solve the linear problem is much smaller with the present
approach, and the number of Newton iterations is almost independent of the chosen precondi-
tioning matrix (see Figure 2). This last property can be explained by the value of the coefficient
acting on the pressure in the continuity equation. For a fixed value of b, this coefficient is
nearly independent of the preconditioning matrix. This arises from the fact that the ratios
between the Merkle or Pletcher coefficients and the coefficient of the present method are equal
to 1/(ulul) or 1/T respectively (with ulul and T very close to 1 for this test case).

The second advantage of the proposed method for unsteady flows is the improved accuracy
of the temperature field prediction. For flow in an incompressible regime without heat
addition, the temperature variations are proportional to M0

2. A reference solution is obtained
by setting eNewton to 10−8. In this case, the results, presented in Figure 3 by the squared

Figure 1. Taylor vortex advection: influence of the choice of the approximate Newton method on the
efficiency of the temporal integration (normalized CPU time versus b).
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Figure 2. Taylor vortex advection: influence of the approximate Newton method choice and b on the
average convergence of linear and non-linear processes for one time step integration at CFL=1000 and

eNewton=10−4: (a) convergence of Bi-CGSTAB algorithm, (b) convergence of Newton process.

Figure 3. Taylor vortex advection: influence of the approximate Newton method choice and the Newton
convergence criterion on the accuracy of the temperature fluctuations (�T−Tinitial� versus x3 at x1=0.5

and t=1).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 371–401



UNSTEADY VISCOUS FLOWS 387

symbols, are independent of the preconditioning matrix. However, for eNewton=10−4, the
prediction of the temperature fluctuations becomes dependent on the choice of the temporal
integration method. Figure 3 shows that these temperature variations could be much greater
than M0

2 if the convergence criterion of the Newton process is too large when GPletcher or GMerkle

is used. Note that, due to the all-Mach number formulation, the present method allows for a
much more accurate solution, even if a large value of eNewton is used. Since the use of higher
values of the convergence criterion in the Newton process leads to a significant reduction in
computational time, it appears that the present method is better suited to the computation of
stratified incompressible flow (often governed by very small temperature variations) when
compared with approximate Newton methods described in the literature [11–13].

4.2. Influence of the flow regime and mesh refinement

As shown in the previous section, the efficiency of the proposed algorithm strongly depends on
the choice of b. Moreover, the optimal value of b, denoted bopt, is a function of the CFL
number and the reference Mach number. In contrast with previous work [14,16], G is only
introduced to treat the stiffness of nearly incompressible flows. Numerical instabilities of
Bi-CGSTAB owing to mesh refinement and viscous effects are treated by the Jacobi precondi-
tioning, which does not introduce another Newton approximation in Equation (34). Numerical
experiments on a uniform mesh have shown that the value of bopt for unsteady flow can be
evaluated by the following relation:

bopt=

Á
Ã
Í
Ã
Ä

2Dt
3

if M050.05

0 otherwise
(39)

where the time step is such that max�Dx1/ui � is close to 1.
By using this value of b, the efficiency of the algorithm becomes quasi independent of M0

for unsteady flows. In fact, Figure 4 shows the CPU time required to advect the Taylor vortex
on the uniform mesh described above for a reference Mach number M0 varying from 10−4 to
2. The results, normalized by the CPU time required by the computation at M0=1,
demonstrate the success of the method. Note that the variations of the CPU time as a function
of M0 are in between 1 and 1.7. For the incompressible regime (M0� [10−4, 0.05]), the reference
Mach number has no influence on the efficiency. In the subsonic regime (M0� [0.05, 1]), the
efficiency increase is due to the decreased problem stiffness. The efficiency decrease in the
supersonic regime is caused by the neglected kinetic energy variations in the construction of the
approximate Newton method. This yields an increase in the number of iterations in the
Newton process.

Equation (39) is valid only if max(Dx1/ui) is near unity. When this ratio becomes larger,
another rule must be found to estimate bopt. Therefore, in order to evaluate the behavior of the
algorithm, the Taylor vortex has been advected on a stretched mesh in the x3-direction with a
refinement near x3=0.5 (Dx3 min/max=0.0005, 0.01). Three different time steps, Dt=
0.0005, 0.005, 0.05, and two reference Mach numbers, M0=10−3, 0.8, have been considered.
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Figure 4. Taylor vortex advection: influence of the flow regime on the present method efficiency
(normalized CPU time versus M0 at Dt=0.005).

Table I. Influence of M0 and Dt on bopt for a stretched mesh.

Dt M0 bopt

0.0010.0005 0.002
0.040.0010.005
1.300.0010.05

0.8 0.00010.0005
0.250.80.005
7.000.80.05

The values of bopt are summarized in Table I. Even though the values of bopt are greater in the
compressible regime than in the incompressible one for large Dt, the results are quite
surprising. Indeed, the optimal value of b is close to 7 if Dt=0.05 and M0=0.8, whereas this
value is six times smaller for M0=0.001. Yet, when the compressibility effect becomes
important, the artificial compressibility effect must be decreased as the dynamic pressure plays
an important role in the enforcement of the continuity equation. As a consequence, the value
of b is not the best parameter to estimate Newton approximation due to the matrix G. In order
to achieve a better understanding of the relationship between bopt, the time step, and the mesh
size on a stretched mesh, Equation (36) is rewritten as

(DM
−1M+estabG)DQ= −DL

−1fd(Qc
l , Qc

n, Qc
n−1) (40)

with DM
−1 the inverse of the main diagonal of M. The numerical parameter estab is determined

by the relation
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b=estab

gM0
2+2Dt/3MEuler i,k(1, 1)

T
(41)

where MEuler i,k(1, 1) is a diagonal coefficient of the first block of MEuler (Equations (31)–(33)),
and represents the contribution of the spatial derivative of the pressure acting on the evolution
of ri,k in the continuity equation

MEuler i,k(1, 1)=
1

Dx1

�
Dp1+

gM0
2u1

T
�

+
1

Dx3

�
Dp3+

gM0
2u3

T
�

(42)

As b is considered a constant in the previous cases, an estimation of estab is computed with
Equation (41), by assuming that maxi,k b is equal to bopt in Table I. As expected, the results
summarized in Table II show that the second term of the Jacobian in the Newton approxima-
tion (Equation (40)) is smaller in the compressible regime. In Table II, one can see that the
values of estab are of the same order as Dt for the compressible case [33]. Therefore, G acts like
a small perturbation. With the perturbation of the diagonal term able to reach as much as 26
per cent of the exact value, the approximation turns out to be larger in the nearly incompress-
ible case. In fact, for low M0 values, the dynamic pressure behaves like a Lagrangian multiplier
[37,38]. This tends to drive the momentum divergence to zero because its influence on the
variations of r is not significant.

In the following numerical test cases, Equation (41) is used to obtain an estimation of bopt.
For incompressible cases, estab is equal to 0.1 so that, on a uniform mesh, b would
approximate the definition in Equation (39). For compressible cases, bopt is set to 0. Note here
that when no stretched grid is used (as it is here), estab:Dt leads to very small values of b.
Therefore, we chose to set b to 0 in order to speed up the evaluation process.

5. NUMERICAL RESULTS: VALIDATION AND DISCUSSION

In all the following test cases, the dynamic viscosity is set to a constant in order to be
consistent with the benchmark models.

Table II. Evolution of estab in function of Dt and M0 for a stretched mesh.

M0 estabDt

0.060.0010.0005
0.001 0.070.005
0.001 0.260.05

0.00010.80.0005
0.80.005 0.01

0.080.80.05
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5.1. Nearly incompressible regime

In this part, the accuracy of the method is investigated for very low values of M0. The first
problem considered is a steady Rayleigh–Bénard flow, which allows the verification of both
the accuracy of the spatial discretization and the failure of incompressible method when large
temperature variations are present. The second test problem is that of the vortex shedding
phenomenon around a square cylinder. This permits the evaluation of the algorithm ability to
compute unsteady low-Mach number flows.

5.1.1. Rayleigh–Bénard flow. One of the goals of this paper is to illustrate the shortcomings of
the classical incompressible method in accommodating very low-Mach number flows with
large temperature variation. Accordingly, we use the work of Fröhlich and Gauthier [39], who
were interested in natural convection occurring in an astrophysical context. Fröhlich and
Gauthier [39] have employed a numerical method using low-Mach number equations [40] and
a pseudo-spectral discretization, and calculated natural convection with M0 equal to zero and
large temperature variation. Their computational domain, presented in Figure 5, is a rectangle
of length L and height H=1. A strong temperature gradient, defined by (Tb−Tt)=1, is
maintained between the top and bottom walls in order to create significant compressibility
effects, even at low Mach number. The hydrostatic state computed by Equation (6) is

Ts(z)=1.5−z

rs(z)= (1.5−z)a, where a=FrgM0
2−1

The reference temperature is defined by Ts(0.5). The flow parameters of the computations are
summarized in Table III. Free-slip isothermal boundary conditions are applied at the top and

Figure 5. Problem definition.

Table III. Flow parameters.

PrM0 g L/HRe DT/T0 Fr

1 0.71 1.4 2.807887.160.001 1
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bottom surfaces, which yields u3=0, and (u1/(z=0. Also, the temperature is fixed to its
hydrostatic state value. In the x1-direction, the flow is assumed periodic, with period length L.
The initial condition used for the computation is the hydrostatic state randomly perturbed with
infinitesimal amplitude (e.g., 10−6). The computation is performed on a 128×101 points grid,
with uniform discretization in the x1-direction. A hyperbolic stretching is used in the x3-
direction, with refinement near the boundary. Note that the reference computation of Fröhlich
and Gauthier is performed with 64×39 points, but their results are based on a Fourier–
Chebyshev pseudo-spectral algorithm, characterized by a high-order accuracy. Even though
this is a steady state problem, three Newton iterations are made at each time step to enhance
the stability of the time integration [16,17]. The time step is set to 0.01 and approximately 14
iterations of the Bi-CGSTAB are necessary to decrease the residual by one order of magnitude.
The steady state is reached after 100 time units, and the main flow is composed of a roll
generated by buoyancy forces. This is illustrated in Figure 6. The accuracy of the present
method can be estimated from the analysis of Table IV, where some maximum values of the
flow features are compared with the results of Fröhlich and Gauthier. The Nusselt number,
Nu, is a horizontal average of the temperature gradient at the bottom wall

Figure 6. Streamline of the flow.

Table IV. Computed maximum flow characteristics and reference data.

References MM Nu�u �M �9 · u �M wM (pdyn/ps)M ((T−Ts)/Ts)M ((r−rs)/rs)M

0.9410 — 4.428[39] 1.0996 1.2279 3.561 — 0.8320
0.0007 0.8375 0.9734 0.0009 4.461.1066 1.2542 3.590Present

(0.6%) (0.7%)(—)(3.0%)(0.6%)(—)(0.90%)paper (2%)

The quantities in parentheses are the relative errors.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 371–401



I. MARY, P. SAGAUT, AND M. DEVILLE392

Nu= −
#(T
(z

(x, z=0)
$

x

The maximum values of velocity, temperature, and Nusselt are in excellent agreement, with
differences within 1 per cent. The prediction of the maximum value of the density, vorticity,
and the divergence velocity is slightly less accurate with the error reaching 3 per cent. These
differences could be explained by the use of a central second-order accurate spatial approxima-
tion to determine the values of the vorticity and the divergence, where another discrete
approximation is used in the numerical benchmark. However, the difference in the density
could also be explained by the slightly different model used in Reference [39], where the
dynamic pressure is not taken into account for the determination of the density. Yet, the
discrepancies in the maximum values of the flow characteristics are acceptable, especially since
it is known that upwind schemes tend to undershoot or overshoot such data. Thus, we
conclude that the spatial accuracy of the scheme is demonstrated in the low Mach number
regime. Additionally, it is interesting to note that the maximum value of the divergence of the
velocity field is close to 1.2, despite the very low value of the Mach number in the entire flow
field. Therefore, this kind of flow cannot be computed by an incompressible approach. The
present method, however, is able to deal with a broad range of stratified flow conditions,
including strong temperature variations.

5.1.2. Vortex-shedding flow past a square cylinder. The computation of the flow past a square
cylinder is chosen to demonstrate the ability of the present method to accurately simulate
nearly incompressible unsteady flows. Again, experimental and numerical data in the laminar
regime are available in the literature [41–43]. Experimental results, however, do not provide an
appropriate database for the validation of the method. Also, Sohankar et al. [41] show that the
vortex-shedding frequency is strongly influenced by the boundary conditions and the blockage
coefficient (the ratio between the height of the cylinder and the height of the computational
domain). Therefore, the computational domain and boundary conditions, employed in Refer-
ence [42], are retained (see Figure 7) for this test case in order to ensure that the comparisons
of vortex-shedding frequency with the reference results [42] are not perturbed by boundary
conditions and blockage coefficient. The reference length is the size of the cylinder (D=1), and
the reference velocity is the fluid velocity at the inlet. At x3=0 or x3=12, the vertical velocity,
normal derivative of u1 and T are set to zero. At the outlet, u3, the normal derivative of u1 and
the dynamic pressure residuals are set to zero during the computation. Two values of the
Reynolds number, based on the inlet velocity and D, are considered: Re=100 or Re=300.
The Prandtl number is set to 0.71, and the reference Mach number M0 is equal to 0.001. As
the frequency is influenced by the size of the mesh near the cylinder, a stretched 220×200
points grid is used in both directions, with Dx1 min=Dx3 min=0.004 and Dx1 max=Dx3 max=
0.8. The initial condition for the computation is a uniform field: u1=1, u3=0, pdyn=0, T=
0. The time step is set to 0.03 (a first-order accurate temporal derivative approximation is used
in Reference [42] with Dt=0.025) and an average of six Newton iterations are made, as soon
as the transient phenomena due to the initial condition are eliminated. Two snapshots of the
vorticity field illustrating the main features of the flow are shown in Figure 8 for t=100 and
300 and for the lower Reynolds case. In a first phase, a nearly stationary solution of the flow
is obtained around t=100. However, this symmetric solution is lost because of numerical error
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Figure 7. Problem definition.

Figure 8. Re=100, vorticity contours: (a) t=100, (b) t=300.

accumulation and consequently vortex-shedding appears after t=120. The observation of
Figure 9, showing the time history of the lift and drag owing to pressure, allows differentiation
between these different phases. The influence of the viscous effects on the drag and lift
coefficient are within 2 per cent [42] of the global values. At the beginning of the computation,
the lift coefficient is zero, showing the symmetry of the solution, whereas strong variations of
the drag coefficient are present due to the large value of the initial velocity divergence field.
After a transitional period, between t=120 and 200, a periodic solution is obtained. A Fourier
analysis of the lift coefficient, between t=220 and 320, gives a Strouhal number of 0.156,
compared with 0.154 obtained in the reference data [42]. The average value of the drag (equal
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Figure 9. Re=100: (a) lift history, (b) drag history.

to 1.55) and the amplitude of the lift coefficient (close to 0.24) agree well with the reference
data. For the Re=300 case, the flow possesses the same properties, but the lift amplitude and
average value of the drag are increased. Figure 10 shows the behavior of the lift coefficient.
The Fourier analysis is performed between t=450 and 600 to eliminate the presence of
spurious frequencies due to the transitional phase in the lift spectrum. The temporal average
of drag coefficient, between t=450 and 600, is equal to 1.92, compared with 1.89 obtained in

Figure 10. Re=300: (a) lift history, (b) drag history.
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the reference data. Moreover, as mentioned in Reference [42], the signal is not fully periodic,
but a dominant frequency equals to 0.129 can be easily extracted from the lift spectrum. A
Strouhal number of 0.130 is found, which is in very good agreement with the reference data.
In Reference [44], it is shown that the lost of the signal periodicity is due to the bi-dimensional
character of the computations. Therefore, the prediction of vortex-shedding frequency for
different values of the Reynolds number demonstrates the ability of the present method to
simulate unsteady low-Mach number flows.

5.2. Compressible regime

The AUSM+ scheme has shown its accuracy for the computation of subsonic or supersonic
flow [25,26]. The aim of this section is to show that the modifications, introduced to alleviate
accuracy problems in the incompressible regime, do not degrade the performance of the
original scheme for compressible flows. As these modifications do not change the scheme in
the supersonic regime, only subsonic and transsonic flows are computed.

5.2.1. Subsonic compressible mixing layer. Computations of compressible mixing layer are
carried out to evaluate the temporal and spatial accuracy of the present method in the absence
of shocks. The initial growth of the mixing layer provides information on the spatial and
temporal accuracy of the method, where the accuracy of different limiters is assessed in a
transsonic regime (see Reference [45]). A reference solution is produced by using a sixth-order
accurate Hermitian scheme [46] for the spatial derivative, with a third-order accurate compact
Runge–Kutta scheme for the temporal integration [47]. The mean profiles of velocity and
temperature are specified by the following relations:

u1(x1, x3, t=0)=0.5 tanh(2(x3−13))

T(x1, x3, t=0)=1+M0
2 g−1

2
(1−u1)2

where x1 and x3 are varying from 0 to 20 and 26 respectively. The Prandlt number is assumed
to be unity and the pressure is assumed to be uniform at the initial time. The reference
temperature and velocity are based on the upper free stream temperature and the initial
vorticity thickness respectively. The Mach number M0 is 0.8 and the Reynolds number is 400.
The flow is periodic in the streamwise x1-direction and free-slip boundary conditions are
imposed in the normal direction, x3. The vorticity thickness of the mixing layer is defined as

dw=
�

Maxx 3

)(�u3�x 1

(x3

)�−1

with �u3�x 1
being the spatial average in the homogeneous direction x1. A uniform discretiza-

tion is adopted in both directions. The reference solution is obtained on a 300×300 regular
Cartesian mesh grid, whereas the accuracy of the present scheme is assessed on a 150×150
and 75×75 grids. Since the flow is linearly unstable, the instability is forced by adding small
perturbations, u %1 and u %3, to the initial mean velocity
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u %1(x1, x3)=0.05
x3−13

2p
sin

�px1

10
�

exp
�

−
(x3−13)2

10
�

u %3(x1, x3)=0.05 cos
�px1

10
�

exp
�

−
(x3−13)2

10
�

A time step Dt=0.03 is used for the reference computation in order to satisfy the CFL
condition. Different time steps are employed in the implicit integration Dt=0.03, 0.06 and 0.1.
For this case, the solution after the first time step is obtained by the explicit temporal
integration. Indeed, Equation (20) requires two initial conditions. At tn=0, one can assume
that the same initial condition can be imposed at tn and tn−1. However, this is equivalent to
forcing the instability with different u %1 and u %3 than the reference computation. Then, the
growth of the vorticity thickness is perturbed, and comparisons between the reference results
and those obtained with the present method are not valid. Thus, the solution at t=Dt is
achieved by the Runge–Kutta scheme, when the present method is employed for the temporal
integration. The time integration is set to 100, and approximately four Newton iterations are
required at each time step, one or two iterations of Bi-CGSTAB are required. A visualization
of the vorticity is shown in Figure 11(a) at the end of the computation. The growth of the
vorticity thickness is plotted in Figure 11(b) for computations carried out on the 150×150
grid using different values of the time step. It appears that the non-linear phase starts quickly
(t=20), and the large value of the perturbations u %1 and u %3 can explain why the period of
linear growth of the vorticity thickness is so short. Since the solution is almost independent of
the time step and discrepancies with the reference computation are not significant, the

Figure 11. (a) Snapshot of vorticity at t=100. (b) Time history of vorticity thickness (dw versus time).
Reference solution: ; present method (150×150 grid): · · · , Dt=0.06; - - - , Dt=0.4; —, Dt=0.03.
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temporal accuracy of the present method is clearly demonstrated for this case. In fact, small
differences appear between the computations with Dt=0.06 or 0.1, but the solutions obtained
with Dt=0.03 and 0.06 cannot be distinguished. The spatial accuracy can be studied by
looking at Figure 12, where vorticity distribution at x3=13 and the influence of mesh
refinement on the time evolution of the vorticity thickness are shown. On the coarse grid, the
effect of numerical dissipation becomes noticeable, where all extrema of the vorticity distribu-
tion are significantly underpredicted, but the growth of the vorticity thickness is slowed down
[45]. However, results on the 150×150 grid are in very good agreement with the reference
computation, showing the accuracy of the present method in the case of subsonic flow.

5.2.2. Shock/spot interaction. The aim of this numerical test case is to demonstrate that the
modifications introduced in the AUSM+ scheme still allow the computation of unsteady
flows, including shocks. The advection of a Gaussian temperature spot through a straight
shock is considered. Numerical results are given by Garnier et al. [48], who assessed the
accuracy of high-order shock-capturing schemes. The results of the present method are com-
pared with those obtained by the fourth-order accurate weighted essentially non-oscillatory
(WENO) scheme [49], and the Runge–Kutta scheme mentioned in the previous section. The
computational domain is a rectangle of height H=1 and length L=2H. A shock of strength
pfront/pback=0.4, which implies M0=1.1588, is initialized at x1=1. The Reynolds number is
based on the inlet velocity and H=2000, and the Prandlt number is set to 0.7. A Gaussian
temperature spot, Tspot, is added to the temperature field, in front of the shock. This spot,
located at (x1, x3)= (0.5, 0.5), is specified by the following relation:

Tspot(x1, x3)=a1
−4(r2−a1

2)2 exp(−r2/a2)

Figure 12. Reference solution: ; present method: —, 150×150 grid; · · · , 75×75 grid. (a) Vorticity
distribution versus x1 co-ordinate for x3=13. (b) Time history of vorticity thickness (dw versus time).
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r= ((x1−1/2)2+ (x3−1/2)2)1/2, a1=7, a2=0.07

The spot is advected in the streamwise direction, x1, and the flow is periodic in the normal
direction, x3. At the outlet, zero normal derivative of each variable is imposed. A Dirichlet
condition is employed at the inlet. As in Reference [48], the computations are made on a
200×100 regular grid. The time step is set to 0.005 and the period of the computation is set
to unity. Three Newton iterations are performed at each time step, whereas one or two
Bi-CGSTAB iterations are required to solve the linear system. A Minmod limiter [31] is
employed in the present calculations to prevent numerical oscillations near the shock. This
limiter introduces a numerical parameter U, the compression factor, varying from 1 to 4,
which renders the numerical dissipation of the limiter larger for decreasing values of U. In
Figure 13, two snapshots of the streamwise distribution of the density at x3=0.5 are shown for
the initial and final time, illustrating the location of the temperature spot. The crossing of the
shock by the temperature spot at time 0.5 leads to its deformation, which is characterized by
the increase of the baroclinic torque − (1/r2)9p×9r and the formation of two counter-
rotative vortices behind the shock. This is illustrated by the time history of the baroclinic
torque and the L2-norm of the vorticity field plotted in Figure 14. Since the reference results
are recovered near the shock, and regardless of the value of U (see Figure 13(b)), we estimate
that the ability of the present method to deal with shocks has been demonstrated. Yet, the
accuracy of the computation depends on the compression factor. For example, the extrema of
density distribution and baroclinic torque are underpredicted by 10 per cent for U=1, whereas
greater values of U lead to a good prediction of these extrema. However, the time history of
both �w �2 and the baroclinic torque are inaccurate for the larger value of U after t=0.5.
Indeed, the vorticity still increases and the value of baroclinic torque does not go to zero at the

Figure 13. Density distribution at x3=0.5 (r versus x1). Reference solution, ; present method: —,
U=4; - - - , U=2; · · · , U=1. (a) Initial time, (b) final time.
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Figure 14. Reference solution, ; present method: —, U=4; - - - , U=2; · · · , U=1. (a) Time history
of vorticity L2-norm; (b) Time history of baroclinic torque.

end of the computation. This inaccurate behavior of the least dissipative scheme is due to the
presence of oscillations near the shock for some values of x3. This prevents the cancellation of
the baroclinic term. Finally, the choice U=2, which allows a good compromise between the
resolution of the shock and the error on the calculation of the extrema, demonstrates the
ability of the present method to compute unsteady transsonic flow including shocks. The
results could be improved by the use of a more accurate limiter.

6. CONCLUDING REMARKS

A second-order accurate implicit method has been developed for solving unsteady, compress-
ible, viscous, stratified flows at all speeds. The temporal integration is achieved by an
approximate Newton method, based on artificial compressibility. This technique overcomes the
numerical stiffness of the compressible Navier–Stokes equations at low Mach number.
Additionally, a modified AUSM+ scheme is employed for the Euler fluxes in order to allow
computations of flows including shocks, and still maintains the spatial accuracy of the method
in the nearly incompressible regime. This approach achieves a good compromise between
robustness, efficiency, and accuracy for the whole range of Mach numbers. In addition, no
approximation is required to model stratification effects rendering the method more accurate
and general than those based on asymptotic development or Boussinesq linearization. As the
solution of the linear system is crucial for the efficiency of the method, future work includes
improving the Jacobi preconditioning [26] in order to allow the extension of the current model
to three-dimensional computations on stretched grids.
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